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Relevance of symmetry for the synchronization of chaotic optical systems and the related
Lang-Kobayashi model limitations
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Arizona Center for Mathematical Sciences, Department of Mathematics and Optical Sciences Center, University of Arizona
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Synchronization of chaotic semiconductor lasers has now been demonstrated experimentally in a variety of
coupling schemes. Coupling methods include configurations where the transmitter laser system is itself chaotic
and drives a receiver system, both lasers are individually chaotic, and both lasers induce the chaos through
mutual coupling. The dynamics for each of these scenarios is in many cases adequately captured by the
Lang-Kobayashi rate equation model. Such a simplified model, however, ignores fundamental aspects of the
laser dynamics, such as the frequency and carrier density material susceptibility dependence, spatial hole
burning effects, proper boundary conditions, and the fact that lasers may exhibit pronounced multilongitudinal
dynamic behavior with and without the presence of a weak external feedback or injection. The model also
cannot distinguish between many of the possible coupling geometries realizable in experiments. Using an
interactive simulator based on the rigorous microscopic description of the light-matter interaction, we explore
the unidirectionally coupled configuration, the relevance of symmetry for the synchronization achieved be-
tween two identical lasers, and the differences that arise when the traditional analysis through the Lang-
Kobayashi model is compared to the full nonlinear partial differential equation model results.

DOI: 10.1103/PhysRevE.67.016208 PACS number~s!: 05.45.Xt, 42.55.Px, 42.65.Sf
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I. INTRODUCTION

The Lang-Kobayashi model@1# for a single-mode lase
with a weak external feedback is the theoretical workho
for computing and analyzing the behavior of chaotic las
and their synchronization behavior. This model has pro
very successful in capturing most of the qualitative behav
of both the chaos and the synchronization phenomena.

Chaotic dynamics in lasers with external feedback is n
well established experimentally@2–5#. Synchronization of
chaos between a master and slave lasers has also bee
served by various groups worldwide@6–16#, and there are
reports on experimental works on chaotic communicat
system@17–19#.

Chaos generation, synchronization, and their applicati
to communications are the topics extensively covered.
merically and experimentally studied configurations inclu
the ones where the transmitter system is a chaotic exte
cavity laser that drives a originally nonchaotic laser recei
@8,14,17,20–26#, both the systems are chaotic external ca
ties and the receiver is unidirectionally couple
@9,12,13,16,18,19,26–35#, and both systems induce th
chaos through mutual coupling@36–40#. Similar coupling
methods, but with different chaos generation mechanis
have been also reported and analyzed@6,7,10,15,41–44#.

In a numerical comparison of the three main coupli
methods mentioned based on the Tang-Statz-deMars e
tions @45#, it was suggested that the unidirectional coupli
between two individually chaotic external cavity lasers is
best configuration for communication purposes, but som
the more robust synchronization experiments@12,14# have
employed a diode external cavity laser as the master sys
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and a near-identical laser as the slave one. In essence
configuration is akin to an injection-locking experime
where the injected signal is chaotic rather than periodic.

Measurements have used a variety of detection meth
Typically, oscilloscope traces of relatively long-time pow
outputs over hundreds of nanoseconds tend to show exce
synchronization to the eye@8,12,13#. Slow time-scale syn-
chronization tends to be a rather robust phenomenon
seems to occur without any special effort to ensure that
diode transmitter and receiver lasers are near identical~i.e.,
from the same wafer!. The chaotic pulses observed on a p
cosecond time scale, resolved by short streak camera tr
or fast photodiode sensors, had also shown good degree
synchronization@14#, but with the exception of power syn
chronization manifold reconstruction there appears to be
experimental measurements of the synchronization qua
over the very long time intervals that practical chaos co
munication systems require.

The original Lang-Kobayashi~LK ! model equation was
derived using a simple isolated laser single-mode rate eq
tion, augmented by a delayed field term associated to
external cavity feedback. The assumption is that the fe
back is sufficiently weak, due to the very low reflectivity o
the external feedback mirror~typically 1–5 %!, so that mul-
tiple reflections in the external cavity can be ignored. Mo
over, the LK model is a lumped system where all intern
optical fields and carrier densities are averaged. The
model cannot distinguish between individual members o
whole family of lasers whose mean reflectivityR5AR1R2 is
the same for different combinations of individual facet r
flectivities. However, the internal distributed optical field
and carrier densities in the laser can be strongly nonunifo
due to spatial hole burning or by the existence of inter
asymmetries (R1ÞR2, for example!. To correctly resolve the
entire system dynamics, it is necessary to use a full nonlin
©2003 The American Physical Society08-1
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MATUS, MOLONEY, AND KOLESIK PHYSICAL REVIEW E 67, 016208 ~2003!
partial differential equation~FNPDE! model to describe the
lasers with and without feedback.

We present results from a detailed study of the releva
of symmetry in the synchronization of chaotic semiconduc
lasers, by using a FNPDE model integrated into an inter
tive simulation tool. The FNPDE model is built on the rig
orous microscopic description of the light-matter interact
@46#, and is solved via a highly efficient digital filter-base
numerical algorithm for propagating light fields in comple
large-gain-bandwidth devices like semiconductor and fi
amplifier lasers@47#. It will be shown that complete or ful
synchronization is achievable when a symmetric system
employed, while when the symmetry is broken, different
gimes of quality synchronization can be observed. The inh
ent limitations that arise in the Lang-Kobayashi model wh
asymmetric devices and systems are analyzed will also
shown.

II. THE OPTICAL SYSTEM SIMULATOR

The optical system simulator~OSS! tool employed here is
an object-oriented approach to building a modular and fl
ible simulation environment capable of running interactive
on a fast PC Unix work station, parallel machine, or in
distributed network environment. Prior to start-up, the u
can set up an optical system that could consist of one
more semiconductor lasers or doped-fiber devices, at
gratings, HR/AR ~high/antirefractive! coatings, externa
feedback reflectors, filters, etc. When running, differe
graphical interfaces can interrogate various component
the system and display internal optical and carrier den
fields, detector averaged outputs, accumulated output s
tra, eye diagrams, etc. The user can interactively modify
tain device parameters on the fly, such as pump current
jection signal power, wavelength, current modulati
frequency, and many others.

The simulator model used in this work is designed
systems in which the optical field is a single transve
mode. The field is represented by the projection onto
fundamental transverse mode, whose propagation is cha
terized by its phase index~or equivalently, propagation con
stant! and the group velocityvg . At each point along the
system’s optical axis, the optical field is decomposed i
forward and backward propagating components describe
their complex amplitudesE 1 andE 2 that satisfy the partia
differential equations

] tE 6~z,t !56vg]zE 6~z,t !

7 i
vR

2 E
0

`

x@N~z,t !,t#E 6~z,t2t!dt. ~1!

Here,vR stands for the reference frequency, and the c
volution integral represents the locally changing suscepti
ity of the active layer. It may also include other optical pro
erties of the cavity waveguide, such as the ‘‘backgroun
loss. Both the gain and the refractive index change are
culated from a sophisticated many-body theory@46# and
tabulated in terms of the frequency-dependent, complex
ceptibility x(N,v) that depends on the active-layer carr
01620
e
r
c-

r

is
-
r-
n
be

-

r
or
ch

t
of
ty
c-

r-
n-

r
e
e
ac-

o
by

-
l-
-
’’
l-

s-

~sheet! densityN(z,t). The latter obeys an equation that in
cludes the pump current densityJ, the density-dependent ca
rier recombination, and the interaction with the optical fie

] tN5J/e2N/t~N!1
A

2\
Im$PĒ%. ~2!

In the last term,P stands for the polarization andA repre-
sents the active-layer thickness. Similar to the optical fi
amplitudesE 6, in our one-dimensional model the quanti
N(z,t) represents an amplitude of the transverse spatial
file of the carrier density distribution.

Numerical solution of these equations is not straightf
ward if the broad bandwidth and rich dynamics, inherent
some types of semiconductor lasers, have to be accura
captured. Our simulator engine is based on a spatial dig
filtering of the evolving optical field to ensure that all spe
tral components propagate with the correct gain/loss
phase velocity given by the local susceptibilityx„N(z,t),v….
The reader is referred to Ref.@47# for details. The structure
of the simulator is modular, allowing to ‘‘build’’ the simu
lated system from modules such as the active-laser ca
~described by the above equations!, passive ‘‘cavities’’ for
free-space propagation, laser facets, and various op
interfaces.

III. THE UNIDIRECTIONALLY COUPLED SYSTEM

In order to analyze the relevance of symmetry in the s
chronization of unidirectionally coupled lasers, we studi
the system shown in Fig. 1, where on the horizontal axi
master laser is driven into a chaotic regime by a weak ex
nal feedback. An identical slave laser is also driven into
chaotic regime by the unidirectional external injection sp
off from the master laser feedback path.

Figure 2 shows an equivalent system where a synth
interface between the lasers sends a weak feedback into

FIG. 1. The unidirectionally coupled system. On the horizon
axis a master device is driven into a chaotic regime by an exte
weak feedback. From the optical feedback path, an unidirectio
injection is split off to the slave laser.
8-2
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RELEVANCE OF SYMMETRY FOR THE . . . PHYSICAL REVIEW E 67, 016208 ~2003!
master laser and an unidirectional injection to the slave.
synthetic interface, defined with different left and right r
flectivities and transmittivities, allows multiple reflections
the external master cavity but prevents any slave signal f
going back to the master or to the slave itself. This synth
interface provides a truly equivalent system and not an
proximation to the original system in Fig. 1. The master a
slave facets that receive the feedback and the injection
called theperturbed facets.

Figure 3 shows a symmetric unidirectionally coupled s
tem, where both attenuation coefficientsr e and te are equal,
both lasers are identical, and they are oriented in such a
that the lasers face the feedback or unidirectional injec
through equivalent facets. When the system is symme
both lasers experience the same perturbationEp .

Starting from the symmetric case, and by flipping the o
entation of the lasers, up to four possible configurations
be realized, as is shown in the example in Fig. 4. In gene
two of the four resulting cases are no longer symmetric.
course, in the particular case where the lasers are symm
by themselves and their facet reflectivities are equalR1
5R2), there will be only a single symmetric configuration

In this study it is also implicit that the external cavitie
have equal lengths and their round trip times are both eq
to t. However, if the cavity lengths are different, it is just
matter of time shifting the slave output by the differen
between the master external cavity round trip timet and the
laser time separationtc , before any further analysis, and th
same dynamics will be observed.

The LK model, by lumping the laser systems into sca
equations, cannot always distinguish between each of th
four configurations. Yet, from an experimental point of vie
the relative orientation of the HR/AR coated facet las
should be expected to influence the synchronization qua
For reference purposes, the LK model for the unidirectio
ally coupled system shown in Fig. 2 is reproduced in E

FIG. 2. Equivalent unidirectionally coupled system. The refle
tion coefficientr e produces the master feedback, and the transm
sion coefficientte produces the unidirectional slave injection. Th
is a truly equivalent model of the system shown in Fig. 1.

FIG. 3. A symmetric unidirectionally coupled system. Here t
feedback and injection strengths are equal, both lasers are iden
and they face the feedback/injection through the equivalent fa
with the same reflectivityR2.
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~3!, where variables and parameters have the standard m
ing found in the literature~see Table I!

dEm~ t !

dt
5

11 ia

2 FG~N,Em
2 !2

1

tp
GEm~ t !

1
km

t in
Em~ t2t!e2 iw0t,

dEs~ t !

dt
5

11 ia

2 FG~N,Es
2!2

1

tp
GEs~ t !

1
ks

t in
Em~ t2t!e2 iw0t, ~3!

dNm~ t !

dt
5J2

Nm~ t !

ts
2G~N,Em

2 !Em~ t !2,

dNs~ t !

dt
5J2

Ns~ t !

ts
2G~N,Es

2!Es~ t !2,

G~N,E2!5Gn~N2N0!~12eE2!.
The LK model reduces the laser reflectivitiesRi1 andRi2

to a mean reflectivityRi5ARi1Ri2, which enters the LK
model through the photon lifetime parametertp , and the
internal fields and carrier densities are lumped into the sc
valuesEi and Ni . The model assumes that the lasers
single mode, and that multiple reflections in the exter
cavities can be neglected. In fact, there is a much stron
assumption that reduces its applicability range: the
model requires that the coupling coefficientskm and ks ,
defined@1,48# as

-
s-

al,
ts

FIG. 4. Possible configurations of two identical HR/AR lasers
the unidirectionally coupled system. In the two top on
(80:20⇔20:80 and 20:80⇔80:20), the resulting system is sym
metric, in the two bottom ones (80:20⇔80:20 and 20:80⇔20:80)
the symmetry is broken.
8-3
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km5r e

12RM2

ARM2

[r e

tm
2

r m
,

ks5te

A12RM2A12RS1

ARS1

[te

tmts

r s
, ~4!

have to be significantly smaller than 1. This is equivalent
require that the external feedback strengthr e

2 or injection
strengthte

2 must be absolutely and relatively smaller than t
perturbed facet reflectivitiesr m and r s , respectively. This is
a restriction very hard to satisfy for highly effective HR/A
coatings, as for example in a 95:1% configuration, unl
extremely weak feedback and injection strengths are
ployed.

In the LK model, the only parameters that depend on
orientation of the lasers are the coupling coefficientskm and
ks . From Eq.~4!, it is easy to see that there exists a who
family of master-slave configurations, which appears ide
cal within the LK model. Namely, if we define a global LK
coupling coefficientk and constrain the feedback strengthr e
and injection strengthte such that

r e5k
r m

tm
2

, te5r e

r s

r m

tm

ts
, ~5!

then the LK equations~3! will be the same for any choice o
the master/slave facet reflectivities/transmittivities.

Once the externalr e and te coefficients are adjusted, lik
in Eq. ~5!, the internal coupling coefficientsks andkm will
be equal for all the cases, and from the simulation and an
sis point of view under the LK model, all the configuratio
in Fig. 4, symmetric or not, must yield equivalent solutio
and equal degrees of synchronization. However, when
FNPDE model is used and the laser orientations are ta
into full account, very different dynamics and degrees
synchronization are observed for the symmetric and as
metric cases, even when an unique global LK coupling
efficient is employed in all the configurations. In order to s
how much of physics is lost in the LK picture, we conce
trate on the ‘‘LK-invariant’’ family derived from the exampl

TABLE I. Meaning of the variables and parameters in the Lan
Kobayashi model equations~3!.

Em,s(t) Master and slave optical fields
Nm,s(t) Master and slave carrier populations
Gn Modal gain coefficient
N0 Carrier density at transparency
e Nonlinear gain coefficient
tp Photon lifetime
ts Carrier lifetime
a Linewidth enhancement factor
J Injected current density
t Round trip time for the external cavity
t in Round trip time for the internal laser cavity
km Feedback coupling factor
ks Injection coupling factor
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in Fig. 4 and compare the predicted invariability against
results of the FNPDE model. But before going into mo
specific descriptions of the results, we will introduce a loc
synchronization measure by defining thesynchronization in-
dex. We will also introduce the averaging method used
mimic different experimental measurement techniques.

IV. THE SYNCHRONIZATION INDEX

When we say that two systems are synchronized,
mean that they are in some way coupled and their dynam
are almost identical. In a master-slave system, where
coupling occurs unidirectionally from the master system
the slave, this means that the slave must reproduce the
ter’s dynamics closely.

In general terms, ifxW is the master state variable vector,yW
the slave state variable vector,C the coupling operator from
the master to slave, andS a similarity relation, then we say
that the systems are synchronized if the distance between
system trajectories is always smaller than a given tolera
«,

^yW ~C„xW~ t !…,t !,S„xW~ t2G!…&<«, ~6!

where ^,& is a distance metric andG a delay~positive! or
anticipation ~negative! time shifting constant. Usually, the
distance operator does not involve the entire state vectors
some scalar observed variablesx(t)5Om„xW (t)… and y(t)
5Os(yW (t)), whereOm and Os are some observing projec
tions. If the observed variables are output power sign
~positive quantities!, then the similarity relation that ensure
near identity in the time and spectral domains is a sim
scaling relation. Thus, in the ideal case where the dista
between the observed variables is zero, the following rela
must hold:

y~ t !5bx~ t2G!, ~7!

whereb is a positive constant scaling factor. The criterio
does not include an additive term, because if we usey(t)
5a1bx(t2G) instead, the constanta introduces an arbi-
trary frequency peak at the zero or reference frequency,
stroying the similarity between the transmitter and recei
spectra.

Therefore, to locally quantify the synchronization b
tween two discrete power signal samples$xi% and $yi% that
are properly in phase~i.e., after time shifting one of the
signals by any required time shiftG), we probe the scaling
relation by first obtaining the best scaling factorb, using the
standard least-squares approach

b5
sxy

sxx
, sxy5(

i

N

xiyi , ~8!

whereN defines the total sample length or a significant p
of it. Next we compute thesynchronization index~SI!, de-
noted asSi , for every sample pair defined as

-

8-4
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FIG. 5. The synchronization index~SI! and its relation to the relative error and the power synchronization manifold~PSM!. The left
picture shows the SI in terms of the relative error between the two normalized power signals and the synchronization intervals. Th
picture shows the PSM diagram with the different synchronization regions. The right picture shows how these regions open up a
origin when a threshold value of 0.1 is added as in Eq.~10!.
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2
. ~9!

The synchronization indexSi locally measures the rela
tive distance between$yi% and the ‘‘prediction’’$bxi%. Since
the power samplesxi andyi are positive, the synchronizatio
index will be near or equal to 0 when the signal values
similar (yi'bxi), and close or equal to 1 when they a
opposites, i.e., in the extreme case whenyi is much bigger
thanbxi , or vice versa~consider, for example, the situatio
wherexi50 andyi51).

Figure 5~left! shows how the synchronization index b
haves in terms of the relative error between two normali
power values. As the relative error between the two sign
increases, the synchronization index goes from 0 to 1 alm
linearly. With this in mind, we will say that the two signa
are locallysynchronizedwhen the SI values are in an interv
close to 0~the power values are very close to each othe!,
antisynchronizedwhen the SI values are in an interval clo
to 1 ~the power values are opposite ones!, and desynchro-
nizedwhen the SI values are neither close to 0 nor to 1.

The exact boundaries of the synchronization intervals
arbitrary, but once they are chosen, corresponding po
synchronization manifold regions can be associated w
them through Eq.~9!, as is shown in Fig. 5~middle!. For the
present analysis, we defined the synchronized interval fo
values smaller than or equal to 0.2~relative error smaller
than 25%! and the antisynchronized interval for SI valu
greater than or equal to 0.8~relative error greater than 82%!.
The desynchronized interval is therefore defined for SI v
ues between 0.2 and 0.8. In a real system the interval ch
could be related, for example, to some detector charact
tic.

In systems where the output powers are allowed to re
levels close to the numerical or physical noise, it is desira
to assume that two power values at the noise level are alw
similar, independent of their actual values@consider, for ex-
ample, the case wherebxi51024 mW and yi51026 mW,
which in Eq. ~9! producesSi'0.99, but it is specified tha
values smaller than 1022 mW are noise#. To include this
criterion, the synchronization index is corrected by addin
threshold value as follows:
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21b2xi

21U2
. ~10!

With this correction, wheneveryi and bxi are much
smaller than the thresholdU, the synchronization index will
always be small. Figure 5~right! shows the effect of adding
the threshold on the power synchronization manifold
gions. It can be seen that the synchronization regions o
up around the origin, allowing one to include different sm
noise power values in the synchronized region@now bxi
51024 mW, yi51026 mW, U51022 mW and Eq. ~10!
produceSi'0.01].

V. OBSERVATIONAL TIME SCALES AND DETECTOR
RESPONSES

In order to capture the differences between the exp
mental observations using different means of detection
detector responses, we need to introduce the notion of
observational time scale. But first, we must remark that
time stepDt used in our simulations is of the order of 100 f
Therefore, we can access or observe the laser output at a
scale much finer than that achievable in experiments.
mimic experimental observational time scales, we preproc
the simulation output data by applying an exponential av
age filter using different response times. Thus, if$xi

s% is our
raw simulation data output, then the data used for synch
nization analysis$xi% are obtained through the iterative fo
mula

xi5~12l!xi 211lxi
s , x050, ~11!

where lP(0,1# is the parameter that defines the respon
time of the filter. To understand the role ofl, we rewrite
iterative expression~11! like the equivalent exponential av
erage,

xi5(
j 50

i 21

wjxi 2 j
s , wj5l~12l! j , (

j 50

`

wj51. ~12!

When l is close to 1, the filtered value will be mainl
defined by the most recent sample data, since the individ
8-5
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FIG. 6. Material susceptibility curves for different carrier densities in the relevant frequency range. Thex8 picture shows the real par
curves, starting from the top, for equally spaced carrier density values in the range from 2.531016 m22 to 631016 m22. The2x9 picture
shows the negative imaginary part~gain! curves, starting from the bottom, for the same carrier density values.
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weightswi tend to zero exponentially. Ifl is decreased, the
past sample data will become more important as the wei
decay slower. To get an idea of how much the past sam
data contributes to the filtered output, we define the fi
response time~FRT!, denoted asFRT, as the time window
that involves 95% of the accumulated weights, i.e.,

FRT~l!5NlDt, (
j 50

Nl

wj595%. ~13!

By using different filter response times, orl values, we
can choose different observational time scales, mimick
what is observed by different detection devices. The slow
time scale resolution would correspond to oscilloscope tra
~FRT of the order of nanoseconds!, the fast ones to strea
camera traces~FRT of the order of picoseconds!, and the
fastest ones to ‘‘ideal instrument’’ traces~FRT of the order of
femtoseconds or less!. A similar but simpler distinction has
been used in Ref.@21# with the names ofmacroscopicand
microscopictime scales.

VI. RESULTS

To understand the relevance of the symmetry on the
tem synchronization, we simulated the four configuratio
shown in Fig. 4 for two identical asymmetric 80:20
HR/AR coated devices, trying to keep everything the sa
except for the laser orientations. The laser models w
Fabry-Perot cavities, 250mm long with an active-layer build
of a 10-nm In0.2Ga0.8 well with Al xGa(12x)As barriers,
wherex rises linearly with the distance from the well from
0.1 to 0.6 over 85 nm. Figure 6 shows the resulting susc
tibility values x for the active-layer composition and its fre
quency and carrier density dependence. Thex values are fed
into the OSS simulator through look-up tables for efficie
computation.

The lasers were operated just above the solitary thres
current where they lase on a single mode at a frequenc
302.995 THz. The external cavities were 30 cm long. T
one attached to the master laser allows multiple reflectio
The output field observations were made at the pertur
facet, over 1ms of simulation time using aDt5125 fs time
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step. The output field data was recorded every 250 fs, eno
to cover the relevant output bandwidth, and the initial 50
transient time was discarded.

Starting with the 80:20⇔20:80 case, the feedbackr e
2 and

injection te
2 strengths were set to 0.2%. In this initial regim

the system shows very rich dynamics. Figure 7 shows v
asymmetric internal forward and backward fields profile
greatly influenced by the HR/AR coatings and the mu
mode regime. The resulting internal carrier density profi
also asymmetric, is a clear evidence of strong spatial h
burning.

The pictures in Fig. 7 are placed in the same way as
lasers face each other in the simulated configuration. Th
fore, the right value of the master forward field profile ente
like an attenuated injection at the left side of the slave f
ward field profile. The configuration and the highly synchr
nized regime make the plots look like mirror images, whe
the slave backward/forward field profile is a mirror image
the master forward/backward one.

The same mirror image effect is visible in the carrier de
sity profiles, showing that the lasers are synchronized
only with respect to the observed power output values, bu
the entire state variable space. Note that while the in the
model a laser is realized with only 2E11N53 state vari-
ables, within the FNPDE model each laser equation sys
has (4E11N)3Ng21, where Ng is the number of grid
points. In particular, for the laser lengths and the time s
used,Ng is 31, resulting in 154 state variables for each las
The multidimensional FNPDE model is therefore weak
coupled, since it has 154 state variables coupled through
injected field variables~compared to the LK model that ha
only three state variables coupled through two injected fi
variables!, but still is strongly synchronized.

As can be seen in Fig. 7~middle!, the external weak feed
back not only produces a multimode regime, but it also sh
the laser output frequency by about 0.75 THz from the i
lated 302.995-THz lasing mode. The resulting spectra spr
over nearly 1.5 THz, showing around ten longitudin
modes. The zooming into one of the laser modes displaye
Fig. 7 ~bottom! also shows that the individual modes a
broadened considerably, and the external cavity modes
8-6
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FIG. 7. Snapshot of the dynamic observed in the 80:20⇔20:80 symmetric case. The top pictures show the internal fields~solid line for
the forward field and dashed for the backward field! and carrier density profiles. The middle pictures show the multimode regime an
bottom ones show the broad chaotic signature in one of the frequency modes.
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but
clearly visible as the regularly spaced peaks. The spe
just like the internal profiles, look identical at both frequen
resolutions because the optical field outputs were very w
synchronized in amplitude and phase. Also note that
spectra pictures are ‘‘single shots’’ at a given time, and
signal spectra is not static. They change dynamically, ex
iting chaotic mode power transfer and beating during
entire simulation as the antiphase dynamics observed ex
mentally in Ref.@16#.

We then proceeded to compare the different power an
time series for different observational time scales of 7.5
01620
a,

ll
e
e
-

e
ri-

SI
s,

750 ps, and 75 ps, corresponding tol values of 1024, 1023,
and 1022. For easier visualization, the slave power time s
ries were scaled by using theb factor computed according to
Eq. ~8!.

Figure 8 shows the results for the symmet
80:20⇔20:80 case. As observed before, the synchroniza
quality is very high, where the SI values for the slowest tim
scales are always smaller than 0.01, where the greatest
ues occur during the power dropout event, and no visi
difference between the power time series can be obser
For the faster time scales, the SI spike values increase,
8-7



MATUS, MOLONEY, AND KOLESIK PHYSICAL REVIEW E 67, 016208 ~2003!
FIG. 8. Power~master and slave lines not distinguishable! and synchronization index time series for the 80:20⇔20:80 case~see Fig. 4!
at different time scales~starting from the top, filter or ‘‘detector’’ response times of 7.5 ns, 750 ps, and 75 ps!.
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not enough to show visible difference between the sig
even at the fastest time scales. The origin of the high si
larity between the signal outputs, independent of the ti
scale employed, is the complete or full synchronizat
achieved in this configuration, which extends to the en
state variable space.

As we said before, to study the relevance of symmetry,
tried to keep the system the same for the four possible c
figurations, except for the laser orientations. Hence, in
three remaining cases we first adjusted the external feed
strengthr e

2 and injection strengthte
2 according to Eq.~5!,

maintaining the same global LK coupling coefficient used
the first case. In this way, we will cancel the effects of cha
ing the external coupling coefficientskm andks when we flip
the lasers, and we could analyze the effects of the remai
internal laser asymmetries.

Thus, for the symmetric case 20:80⇔80:20, the global
LK coupling coefficient was maintained by making both t
feedback strengthr e

2 and injection strengthte
2 equal to 3.2%.

Figure 9 shows, like the previous symmetric case, that b
laser outputs look identical on the slowest time scales,
only some small differences can be observed on the fas
ones during some of the power dropout recovery events.
slight loss of synchronization is due to the statistical ind
pendence of the laser noise sources and due to the we
synchronization characteristic of this configuration.

The synchronization observed in these symmetric ca
01620
l
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e
n
e

e
n-
e
ck
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ng

th
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es

has been previously called complete or full synchronizat
@10,12,24,39#, referring to the mathematical sense whe
both the master and slave systems yield near or iden
solutions. Complete synchronization has been observe
numerical simulations based on the LK model where t
identical devices are considered, but there are no experim
tal reports about it, since it seems to be very sensitive to
parameter mismatch@22#. Therefore, it is interesting to ob
serve that the FNPDE model, which is highly multimode a
multidimensional~as is a real system!, also shows this kind
of synchronization.

In the asymmetric case 80:20⇔80:20, the feedback
strengthr e

2 and injection strengthte
2 were adjusted to 0.2%

and 3.2%, maintaining the same LK coupling coefficient
before. Figure 10 shows the resulting power and SI ti
series, where it can be observed that in spite of the coup
coefficient adjustments, the synchronization quality is n
comparable to the previous symmetric cases. Particularly
teresting is the fact that the slave power time series show
kind of laggard behavior when the slave power dropouts
consistently shifted with respect to the master ones, prod
ing the corresponding high spikes in the SI graphs.

The lag synchronized regimes have been also found
merically using the LK model@10,22–24,27# and experimen-
tally in Refs.@12,14#. In most of these cases the slave inje
tion was stronger than the master feedback, making
8-8
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FIG. 9. Power~master in solid lines and slave in dashed! and synchronization index time series for the 20:80⇔80:20 case~see Fig. 4!
at different time scales~starting from the top, filter or ‘‘detector’’ response times of 7.5 ns, 750 ps, and 75 ps!.
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plausible to understand this regime as a nonlinear amplifi
tion process@14,22#.

We examined this case further by applying a 2 ns ti
shift to the slave output, which corresponds to the laser t
separation. Figure 11 shows that there is a significant
provement in the synchronization quality, since the pow
dropout lag behavior disappears. Still, there are visi
spikes in the SI graphs, but now during the power drop
recoveries, and they are narrower and smaller than those
served before during the power dropout event when the t
shift was not included. The origin of these is the faster sla
power recovery that occurs before the master injection
strong enough to bring both lasers back to synchronizat
This is consistent with the nature of the synchronization
served, characterized as a nonlinear amplification proc
which can be easily broken when the injection is we
enough.

For the asymmetric case 20:80⇔20:80 in Fig. 12, the
feedback strengthr e

2 and injection strengthte
2 were adjusted

to 3.2% and 0.2%, and the slave output was properly sca
In this case, the synchronization between the master
slave is the poorest one, and it does not improve very m
when slower observational time scales are employed. N
however, that the signals are still strongly coupled, since
master and slave power recoveries are synchronized, an
pulse structures are also essentially in phase, despite
different magnitudes. We observed this kind of synchroni
01620
a-

e
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tion, even in a symmetric system, when the coupling inj
tion was weak compared to the feedback.

To investigate the origin of the strong loss of synchro
zation for the asymmetric cases, it is necessary to analyze
internal boundary conditions at the slave perturbed fa
Figure 13 shows the boundary conditions elements in
corresponding equation~14! for the original nonflipped con-
figuration

Es
1~ t !5r sEs

2~ t !1tstetmEm
1~ t2t!5r sEs

2~ t !

1r sksEm
1~ t2t!, ~14!

whereks is the LK coupling coefficient defined in Eq.~4!.
By analogy, if we write down the boundary condition for th
flipped slave laser, we obtain

Ês
1~ t !5 r̂ sÊs

2~ t !1 r̂ sk̂sEm
1~ t2t!, ~15!

where r̂ s and k̂s are the new reflectivity and coupling coe
ficients in the perturbed facet after the flip, andÊS

1 is the
flipped field solution.

We can define the relative injection strength~RIS!, de-
noted asRIS , as the ratio between the terms in the sla
boundary conditions in Eqs.~14! and ~15!,
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FIG. 10. Power~master in solid lines and slave in dashed! and synchronization index time series for the 80:20⇔80:20 case~see Fig. 4!
at different time scales~starting from the top, filter or ‘‘detector’’ response times of 7.5 ns, 750 ps, and 75 ps!.
r k uuE1~ t2t!uu uuE1~ t2t!uu
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RIS5
s s m

r suuEs
2~ t !uu

5ks
m

uuEs
2~ t !uu

,

RIŜ5
r̂ sk̂suuEm

1~ t2t!uu

r̂ suuÊs
2~ t !uu

5k̂s

uuEm
1~ t2t!uu

uuÊs
2~ t !uu

, ~16!

therefore

RIŜ5
k̂s

ks

uuEs
2~ t !uu

uuÊs
2~ t !uu

RIS . ~17!

It can also be shown~see the Appendix! that the relation
between the nonflipped and flipped fields at the slave bou
ary condition is approximately given by

uuEs
2~ t !uu

uuÊs
2~ t !uu

'Ar̂ s

r s
, ~18!

from where

RIŜ'
k̂s

ks
Ar̂ s

r s
RIS . ~19!

If we preserve the LK coupling coefficients, then
01620
d-

RIŜ'Ar s

r s
RIS . ~20!

This means that for the 80:20⇔80:20 case, the relative
injection strength is approximately given by

RIŜ'A4 0.8

0.2
RIS5A2RIS . ~21!

Or in other words, for the 80:20⇔80:20 configuration the
square of the flipped relative injection strengthRIŜ is about
twice the original nonflipped one. Similarly, in th
20:80⇔20:80 case the square of the flipped relative inje
tion strengthRIŜ is about half of the original nonflipped one
This is in line with the observation that the adjustment of t
feedback strengthr e and injection strengthte to keep a glo-
bal LK coefficient, like we did with the four configuration
before, was not the optimal choice for the asymmetric ca
In fact, in the 80:20⇔80:20 asymmetric case the resultin
injection was too strong, producing the lag synchronizat
or nonlinear amplification regime, and in the 20:80⇔20:80
case, the resulting injection was too weak, producing
coupled but very poorly synchronized regime.

To verify that the loss of the relative injection streng
was the main reason of the loss of synchronization, we p
ceed to vary the flipped injection factort̂ e in order to main-
8-10
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FIG. 11. Power~master in solid lines and slave in dashed! and synchronization index time series for the time shifted 80:20⇔80:20s case
at different time scales~from the top, filter or ‘‘detector’’ response times of 7.5 ns, 750 ps, and 75 ps!.
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tain the RIS ratio instead of the global LK coupling coef
cient; i.e., from Eq. ~19! we set the flipped coupling
coefficient t̂ e such that

RIŜ

RIS
5

t̂ et̂ s

tets
Ar s

r̂ s

51,

which implies

t̂ e5te

ts

t̂ s

Ar̂ s

r s
. ~22!

Note that by using the injection factor defined in Eq.~22!
instead of the one that preserves the global LK coupl
coefficient~5!, we are departing to a case outside of the ‘‘L
invariant’’ family, since the new LK coupling coefficient wil
be

k̂s5ksAr s

r̂ s

, ~23!

and therefore within the LK model, nonsynchronization
poor synchronization must be observed when the r
Ar s / r̂ s differs from 1, as it happens when the laser by its
is asymmetric and its facet reflectivities are not equal.

To preserve the flipped relative injection strengthRIŜ in
the 80:20⇔80:20 case, the flipped injection strengtht̂ e

2 had
01620
g

r
io

f

to be adjusted to around 1.6%, or half of the 3.2% va
previously used. In fact, after modifying it, we found a
optimum synchronization coupling value at 1.57%. Figure
shows the power and SI time series for this optimal case,
as can be seen, there is a significant improvement in
system synchronization, principally because the lag beha
disappeared. However, the resulting synchronization qua
is still behind the corresponding 80:20⇔20:80 symmetric
case.

To preserveRIŜ in the 20:80⇔20:80 configuration,t̂ e
2 had

to be set around 0.4%, or twice the 0.2% value previou
used. As before, we also found a near-optimum value
0.404%. The resulting power and SI time series for the o
mal coupling are shown in Fig. 15.

From these adjusted parameter results, it is clear tha
reach optimal synchronization in the asymmetric cases,
boundary conditions must be kept equivalent between
symmetric and asymmetric cases by trying to maintain
same RIS ratio instead of the LK global coefficient. How
ever, even when that correction is applied, the synchron
tion quality it is still worse than in the symmetric cases.

This is evident when we compare Fig. 7, which shows
internal laser profiles and the output spectra for the symm
ric case 80:20⇔20:80, and Fig. 16, which does the same f
the optimal asymmetric case 20:80⇔20:80* .

As we mentioned before, in the symmetric case there
mirror-image effect between the internal fields and carr
8-11
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FIG. 12. Power~master in solid lines and slave in dashed! and synchronization index time series for the 20:80⇔20:80 case~see Fig. 4!
at different time scales~starting from the top, filter or ‘‘detector’’ response times of 7.5 ns, 750 ps, and 75 ps!.
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density profiles when they reach complete or full synchro
zation. On the contrary, in the asymmetric case, even w
the field profiles show some reflected similarity assum
proper scaling@compare the master forward fields~solid line!
and slave backward fields~dashed lines! profiles, and vice
versa#, the carrier density profiles are clearly not showing t
mirror-image effect. This is due to the asymmetry in the fa
reflectivities, which imposes a marked orientation~especially
for the carrier densities profiles! that cannot be reversed b
the adjustment of the injection strength alone.

Moreover, given that the comparison of the correspond
internal field profiles and output powers must be done a
proper scaling, the synchronization regime observed for
asymmetric configurations is a kind of ‘‘localized synchron
zation’’ @49,50#, which means that the laser fluctuations a
similar but they differ in amplitude. In fact, for the optima
asymmetric cases 20:80⇔20:80* and 80:20⇔80:20* , the

FIG. 13. Fields at the slave perturbed facet.
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output powers were remarkably different in amplitude, sin
the scaling factorsb were around 6.4 and 0.18, respective

The marked carrier density profile orientation and the
calized nature of the field synchronization prevent the sys
from reaching complete synchronization, since both las
cannot yield near or identical solutions in the entire st
variable space. This produces the observed loss of qu
synchronization for the fastest time scales, and the disc
ancies between the signal spectra. Note that the differen
are more visible at both spectral resolutions, as they are c
puted by using the original nonaveraged raw complex fi
data that contain the amplitude and phase signal informat

To get a more global picture of the synchronization qu
ity, we computed the power synchronization manifolds
the four configurations, considering the 2 ns time shift in t
80:20⇔80:20s case, and the two optimal coupling injection
found for both asymmetric cases. The manifolds were co
puted for the fast 75 ps and slow 7.5 ns observational t
scales. The plots were constructed using the data over to
entire 1ms simulation time window but undersampled sin
the number of data points exceeds the graphical resoluti

As it is shown in Fig. 17, at the 75 ps fast time scale t
symmetric system 80:20⇔20:80 looks almost perfectly syn
chronized, with very small deviations from the diagonal. T
second symmetric system 20:80⇔80:20 shows more obvi-
ous deviations from the diagonal for low power values, b
still most of the sample data are contained in the synch
8-12
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FIG. 14. Power~master in solid lines and slave in dashed! and synchronization index time series for the optimal 80:20⇔80:20* case at
different time scales~starting from the top, filter or ‘‘detector’’ response of 7.5 ns, 750 ps, and 75 ps!.
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the
nized region. In the asymmetric 80:20⇔80:20s time shifted
configuration, the data pairs visibly spread outside the s
chronized region, even when the 2 ns time shift is appli
For the optimal 80:20⇔80:20* case, the synchronizatio
quality improves greatly, but it is never as good as the c
responding 80:20⇔20:80 symmetric case.

In the asymmetric system 20:80⇔20:80, the data pairs
escape from the synchronized region and a horizontal fea
appears. The latter is consistent with the prolonged po
dropouts observed only in the slave laser~see Fig. 10!. Here
also the synchronization improves for the optim
20:80⇔20:80* case obviously, but as before, the resulti
quality is not as good as in the corresponding symmetric o

At the 7.5 ns slow time scale in Fig. 18, like it was o
served with the time series plots, the synchronization qua
looks better and almost no deviations from the synchroni
region appear in the symmetric systems. In the asymme
time shifted 80:20⇔80:20s and optimal 80:20⇔80:20*
cases, the number of data pairs included in the synchron
region is much greater than that observed for the fast t
scale, and now the synchronization for the optimal injectio
is much closer to that observed in the corresponding s
metric case.

For the 20:80⇔20:80 case, the horizontal feature that a
pears in the fast time scale picture is still visible, and mos
the data pairs are also outside the synchronized region.
the optimal 20:80⇔20:80* case, on the other hand, there
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a visible improvement in the synchronization quality, and
is also much closer to the symmetric one.

The power synchronization manifolds shown give us
picture of the global synchronization quality in the system
In the graphs, however, two, ten, or hundred identical or v
close data pairs will appear as one pair. So, even when
darker regions represent accumulation of data pairs, it is
possible to distinguish clearly between lightly and heav
populated regions.

With this in mind, we now introduce a global synchron
zation description based on the accumulated synchroniza
index histogram~ASIH! that in contrast to the power syn
chronization manifolds will give us a precise count of ho
many data points reside within or outside the synchroni
region. The accumulated synchronization index histogram
lows one to infer the degree to which the system rema
synchronized over the entire simulation time window.

Figure 19 shows the ASIH for the different time scal
used earlier~7.5 ns, 750 ps, and 75 ps!, plus the 7.1-ps and
the original 250-fs ones, corresponding tol values of 1021

and 1, respectively. In the pictures, for a given observatio
time scale or the corresponding filter response time FRT,
can read off the percentage of sampled data having a
chronization index equal to or less than some threshold. T
percentage measures the global synchronization quality.

As we described before, the symmetric 80:20⇔20:80
case is the best synchronized, since the ASIH values for
8-13
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FIG. 15. Power~master in solid lines and slave in dashed! and synchronization index time series for the optimal 20:80⇔20:80* case at
different time scales~starting from the top, filter or ‘‘detector’’ response times of 7.5 ns, 750 ps, and 75 ps!.
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chosen 0.2 SI threshold are equal to or greater than 99
independent of the chosen time scale. This means tha
power signals are almost perfectly synchronized for all
observational time scales and over the entire 1ms simulation
time window. For the symmetric 20:80⇔80:20 system, the
lasers also show a very high degree of synchronizat
where a very small degradation is observed for the fas
time scale, as the ASIH percentage slightly drops to a ra
between 98.7% and 99.9%.

In the asymmetric time shifted 80:20⇔80:20s case, the
loss of synchronization is visible for the LK coupling coe
ficient as the ASIH value drops to a range between 43.
and 96.4%, even after applying the 2 ns time shift. When
optimal coupling is used instead, without any time shiftin
the synchronization quality improves significantly and t
ASIH value goes up to a range between 78.3% and 99.
For the asymmetric 20:80⇔20:80 configuration, the ASIH
percentage for the LK coupling coefficient is in the ran
between 18.0% and 36.2%, showing a poorest synchron
tion quality. In fact, we can conclude that this system
mains desynchronized for most of the simulation time w
dow, independent of the observational time scale employ
This suggests us to name this regime as a ‘‘locally coup
regime,’’ capturing both the coupled and localized charac
istics of its dynamics, but differentiating it from the oth
observed synchronized regimes. When the optimal coup
is used, the synchronization quality improves significan
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and the ASIH percentage goes up to a range between 83
and 99.9%.

The asymmetric configurations show how the loss of sy
metry makes the systems go from a very well-synchroni
regime, where no major time scale dependence is obser
to the cases where the synchronization quality and its na
are changed. It is possible to go from a mainly desynch
nized ‘‘locally coupled regime,’’ when the coupling coeffi
cient is much smaller than the optimal one, to a ‘‘localiz
lag synchronization,’’ where the coupling coefficient is mu
larger than the optimal one. When the optimal coupling c
efficients are employed, the laggard behavior disappears
very good ‘‘localized synchronization’’ can be observed, e
pecially for the slow time scales. These show synchroni
tion quality is comparable to the complete or full synchro
zation quality observed in the corresponding symme
configurations. However, for the fastest time scales, the
synchronization always shows a visible degradation with
spect to the complete one.

Figure 20 summarizes the previous observations. It sh
the accumulated synchronization index histogram value
the given 0.2-SI threshold as a function of the observatio
time scales or filter response times. The synchroniza
quality of the different discussed configurations can be a
lyzed through the corresponding curves in the picture.

As can be seen, the symmetric case 80:20⇔20:80 is the
best synchronized one, with ASIH values of practica
8-14
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FIG. 16. Snapshot of the dynamics observed in the optimal 80:20⇔20:80* case. The top pictures show the internal fields~solid line for
the forward field and dashed for the backward field! and carrier density profiles. The middle pictures show the multimode regime an
bottom ones show the broad chaotic signature in one of the frequency modes.
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100% for all the filter response times computed. The sec
symmetric 20:80⇔80:20 case shows a slight loss of sy
chronization, since its ASIH percentage drops to 98.7%
the fastest time scale. The high synchronization quality
both cases is coming from the complete or full synchroni
tion achieved in the whole state variable space, which allo
to yield near to identical solutions in the master and sla
lasers. The slight difference between both symmetric ca
shows, however, that even two perfectly symmetric syste
with identical laser devices can produce different synchro
zation dynamics. This requires further investigations as it
01620
d

r
r
-
s
e
es
s

i-
n

give some clues about what configurations are better suit
for synchronization purposes.

In the asymmetric case 80:20⇔80:20 under the LK glo-
bal coupling coefficient, the synchronization quality dro
dramatically especially for the fastest time scales. As w
observed in the power time series, the main reason of
quality loss seems to be the laggard behavior observed in
slave laser, associated with the nonlinear amplification p
cess that occurs when a much stronger relative injectio
employed. Accordingly, the synchronization loss can
compensated by applying the 2 ns time shift, which cor
8-15
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FIG. 17. Power synchronization manifolds for the 75 ps fast time scale. The first two pictures correspond to the symmetric case
middle ones correspond to the asymmetric cases where the LK global coupling coefficient is preserved, and in the 80:20⇔80:20s case a 2
ns time shift is included; and the last two lower pictures correspond to the asymmetric cases with optimal coupling coefficients. T
lines represent the synchronized region limits.
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sponds to the laser time separation, as it is shown in
80:20⇔80:20s curve. The improvements observed, howev
are related to the slow characteristics of the signals, s
they are smaller or hardly visible for the fastest time sca
When the optimal injection is employed, as can be seen
the 80:20⇔80:20* curve, the synchronization improves si
nificantly, especially for the fastest time scales, since in
worst case the ASIH is around 20% below the correspond
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value for the symmetric case 80:20⇔20:80.
For the asymmetric case 20:80⇔20:80, when the globa

LK coupling coefficient is maintained, the synchronizatio
quality drops to levels where the system regime can
longer be considered as synchronized, but only as loc
coupled. This is due to the resulting relative weak injecti
that is not strong enough to bring the slave laser into s
chronization. For completeness, the 2 ns time shif
8-16
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FIG. 18. Power synchronization manifolds for the 7.5 ns slow time scale. The first two pictures correspond to the symmetric c
two middle ones correspond to the asymmetric cases where the LK global coupling coefficient is preserved, and in the 80:20⇔80:20s case
a 2 ns time shift is included; and the last two lower pictures correspond to the asymmetric cases with optimal coupling coefficients.
lines represent the synchronized region limits.
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20:80⇔20:80s curve was also include in Fig. 20, but as
can be seen, the time shift applied only makes the sync
nization quality slightly worse than the in-phase case. Wh
the optimal injection coupling is employed, as is shown
the 20:80⇔20:80* curve, the synchronization quality for th
slowest time scale is almost as good as that observed in
corresponding symmetric case, and for fastest time scale,
also around 20% smaller.
01620
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For both the optimal asymmetric cases, the synchron
tion quality at the slowest time scales looks as good as in
symmetric cases, since the ASIH goes to values nea
100%. The loss of synchronization for the fastest time sca
is produced by the remaining internal asymmetries,
marked hole space burning effects and the localized natur
the synchronization, which all prevent the system fro
reaching complete or full synchronization in the whole st
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FIG. 19. Accumulated synchronization index histograms. The two top figures refer to symmetric cases; the middle ones to th
metric cases using the global LK coupling coefficient, where the 80:20⇔20:80s includes the 2 ns time shift; and the last two are t
asymmetric cases under optimal coupling conditions.
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variable space. It should be noted that this inherent los
synchronization, can be easily underestimated or not be
at all when slow sensors or observational time scales
employed. This fact is particularly relevant for possible fa
communications and encryption applications.

VII. CONCLUSIONS

We have presented simulation results of a full nonlin
partial differential equation semiconductor laser mo
01620
of
en
re
t

r
l

where the optical material response is the input from ga
refractive index tables computed from a fully microscop
and experimentally validated theory. This allows us to qu
titatively include the effects of frequency and carrier dens
dependent material susceptibilities, as well as proper bou
ary conditions.

The simulation model has been used to study reali
asymmetric extended Fabry-Perot laser devices, and the
fects of their relative orientation on the quality of synchr
nization. In the analysis the studied system was a cha
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external cavity laser transmitter unidirectionally coupled
an originally nonchaotic laser receiver.

Details of the internal fields and boundary conditions
averaged out when the usual lumped-parameter La
Kobayashi model is employed. We have shown that v
different laser configurations can be set up as a membe
the same LK invariant family. The synchronization qual
and its nature differ markedly for each of these differe
configurations despite the fact that each has an identical
description. Sometimes, ‘‘lucky snapshots’’ of a poorly sy
chronized system can show apparent good synchroniza
especially for slow observational time scales.

Our results show that by enforcing the LK equivalenc
and contrary to what the LK model predicts, we encoun
various types of synchronization behavior and regimes,
cluding complete or full synchronization for the symmet
system, and localized lag synchronization and the desync
nized locally coupled regime for the asymmetric ones. T
reveals the inherent LK model limitations related to the u
of asymmetric devices and/or configurations.

The poor synchronization of asymmetrically orient
transmitter-receiver systems can be significantly impro
by departing from the constraints associated with the sin
LK invariant family. By adjusting the feedback and injectio
strength close to the ones computed to keep the relative
jection strength constant, optimal localized synchronizat
regimes can be found. However, even when the optimal
rameters improve significantly the synchronization quality
is never as good as in the symmetric cases. The persi
loss of synchronization in the asymmetric systems is du
strong spatial hole burning effects, the remaining syst
asymmetries, which cannot be compensated by the exte
adjustment of the injection strength alone, and the locali
nature of the synchronization regime. All of these fina
prevent the system from reaching complete or full synch
nization in the whole state variable space.

We introduced SI and ASIH as more reliable measures

FIG. 20. ASIH values for the 0.2-SI threshold as a function
the filter or ‘‘detector’’ response times.
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the synchronization quality locally and globally over lon
time intervals, respectively. We applied them to different o
servational time scales and showed that the observed
chronization quality not only depends strongly on the inh
ent properties of the analyzed system but also on
observational time scale or the detector response emplo
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APPENDIX: RELATION BETWEEN THE NONFLIPPED
AND FLIPPED BACKWARD FIELDS AT THE

PERTURBED SLAVE FACET

Finding the approximate relation between the absol
backward field valueuuE2(t)uu and the flipped oneuuÊ2(t)uu
at the perturbed slave facet, as expressed in Eq.~17!, is
equivalent to find the relation between the maximum ba
ward fieldE1

2 and the maximum forward fieldE2
1 shown in

Fig. 21.
Assuming that the laser is operating near the thresh

value, in a steady state, and that the perturbationEp is weak,
then the forward and backward fields are amplified as
lows:

E2
1'GE1

1 , E1
2'GE2

2 , ~A1!

and the respective boundary conditions for each facet imp
the constraint

E1
15r s1E1

2 , E2
25r s2E2

1 . ~A2!

Combining Eqs.~A1! and ~A2!, we obtain

G'
1

Ar s1r s2

, E1
2'Ar s2

r s1
E2

1 , ~A3!

thus, by renamingr s1 and r s2 as r s , and r̂ s, respectively,

uuEs
2~ t !uu

uuÊs
2~ t !uu

'
uuE1

2uu

uuE2
1uu

'Ar s2

r s1
5Ar̂ s

r s
. ~A4!

f

FIG. 21. Internal field diagram for the slave laser.
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